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A B S T R A C T

Recent studies demonstrate that the brain parses natural language into smaller units represented in lower-order 
regions and larger units in higher-order regions. Most of these studies, however, have been conducted on uni
directional narrative speech, leaving the linguistic hierarchy and its cortical representation in bidirectional 
conversational speech unexplored. To address this gap, we simultaneously measured brain activity from two 
individuals using functional near-infrared spectroscopy (fNIRS) hyperscanning while they engaged in a natu
ralistic conversation. Using a Pre-trained Language Model (PLM) and Representational Similarity Analysis (RSA), 
we demonstrated that conversational speech, jointly produced by two interlocutors in a turn-taking manner, 
exhibits a linguistic hierarchy, characterized by a boundary effect between linguistic units and an incremental 
context effect. Furthermore, a gradient pattern of shared cortical representation of the linguistic hierarchy was 
identified at the dyadic rather than the individual level. Interpersonal neural synchronization (INS) in the left 
superior temporal cortex was associated with turn representation, whereas INS in the medial prefrontal cortex 
was linked to topic representation. These findings further validated the distinctiveness of linguistic units of 
different sizes. Together, our results provide original evidence for the linguistic hierarchy and the underlying 
cortical architecture during a naturalistic conversation, extending the hierarchical nature of natural language 
from unidirectional narrative speech to bidirectional conversational speech.

1. Introduction

During daily language communication, connected natural language, 
such as discourse, is more commonly employed to convey high-level 
conceptual information and implicit social intentions compared to iso
lated linguistic units, such as a single word or phoneme. Recent neuro
physiological evidence suggests that the brain parses connected natural 
language into the smallest linguistic units, such as phonemes or sylla
bles, and progressively combines these units into nested structures—
words, sentences, paragraphs, and discourse—forming a hierarchical 
organization across multiple timescales (Bornkessel-Schlesewsky et al., 
2015; Chang et al., 2022; Hickok and Poeppel, 2004). Here, we refer to 
linguistic units as phonemes, words, sentences, etc., while linguistic 
hierarchy denotes the hierarchical organization of these linguistic units.

Moreover, our brain entrains its neural responses to such a linguistic 
hierarchy at timescales corresponding to each linguistic unit to achieve 

speech comprehension (Ding et al., 2016; Jin et al., 2018; Lerner et al., 
2011; Xu et al., 2005). For example, by employing naturalistic stimuli 
such as movies or storylines, previous studies have shown that a lis
tener’s cortical activity can dynamically track the linguistic structures of 
stimuli across different timescales, ranging from phonemes and words to 
sentences and discourse (Ding et al., 2016; Keitel et al., 2018; Luo and 
Ding, 2020). Notably, such a linguistic hierarchy differs from syntactic 
structure in that it reflects the human brain’s selective sensitivity to 
linguistic units of different timescales. Additionally, cortical activity 
demonstrates a spatially gradient architecture, with early auditory re
gions and the superior temporal cortex responding more to smaller 
units, such as phonemes and words, while the parietal and frontal 
cortices respond more to larger units, such as sentences and paragraphs 
(Lerner et al., 2011; Hasson et al., 2015; Yeshurun et al., 2017). How
ever, previous studies have primarily investigated the linguistic hierar
chy of unidirectional narrative speech and its underlying cortical 
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architecture in the listener’s brain (Hasson et al., 2015). Thus, little is 
known about the linguistic hierarchy of turn-taking-based bidirectional 
conversational speech and how such a hierarchy, if it exists, is 
co-represented in the brains of interlocutors.

There are crucial differences between unidirectional narrative 
speech, solely produced by an individual, and bidirectional conversa
tional speech, jointly produced by two individuals. Previous linguistic 
theories have suggested that joint activities, such as conversations, lead 
to the emergence of shared representations; that is, two individuals not 
only understand but also anticipate and align with each other’s mental 
states and intentions through dynamically shifting their roles (Hasson 
and Frith, 2016; Jiang et al., 2021; Pickering and Garrod, 2004). For 
example, Pickering and Garrod’s (2004) theory suggests that in
terlocutors automatically align and form shared representations at all 
linguistic levels during conversation, from low-level phonemic repre
sentations to high-level semantic representations of the entire conver
sation as the interaction progresses (Pickering and Garrod, 2004; Stolk 
et al., 2016). Additionally, certain features unique to conversations, 
such as topic switching (corresponding to discourse in a narrative) and 
turn-taking (corresponding to paragraphs in a narrative), contribute to 
the formation of a dyadic-specific hierarchical structure (Levinson, 
2016; Speer et al., 2024). Meanwhile, features universal to both indi
vidual speech and conversations, such as single sentences, may lead to 
similar characteristics between individual and dyadic levels of the lin
guistic hierarchy. To the best of our knowledge, however, little empir
ical neurocognitive evidence has been reported to suggest a parsing 
mechanism by which the brain segments naturalistic conversational 
speech into linguistic units of different timescales, thereby revealing a 
linguistic hierarchy at the dyadic level.

The present study aimed to fill the gap in the literature by investi
gating the potential linguistic hierarchy and its cortical representation 
during a naturalistic conversation task, combining fNIRS hyperscanning 
with a transformer-based PLM. Hyperscanning simultaneously measures 
the real-time brain activity of two or more individuals, enabling un
precedented exploration of neural mechanisms involved in real-time 
interpersonal interactions (Montague et al., 2002). Previously, Jiang 
et al. (2012) conducted the first hyperscanning study on naturalistic 
bidirectional conversation and found that face-to-face communication, 
compared to back-to-back communication, significantly increased INS 
in the left inferior frontal gyrus between interlocutors. Dai and col
leagues (Dai et al., 2018) examined interpersonal interactions in a 
"cocktail party" scenario and discovered selectively enhanced INS at the 
temporoparietal junction between the listener and the attended speaker 
compared to the listener and the unattended speaker. Later, Salazar et al. 
(2021) and Liu et al. (2019) found that neural synchrony between 
communicators in the frontal lobe, right superior temporal sulcus, and 
temporoparietal junction reflects shared cognitive processing of se
mantics and syntax rather than simply shared physical stimuli. Thus, INS 
appears to be a reliable and valid indicator of the cortical representation 
of interpersonal interaction at the dyadic level. Although fNIRS can only 
measure the outer cortical layers of the human brain with limited tem
poral and spatial resolution, it is currently the only technique that 
provides high ecological validity alongside relatively acceptable spatial 
resolution compared to electroencephalogram (EEG) and functional 
magnetic resonance imaging (fMRI).

We focused on linguistic units such as turns and topics, which are 
larger in timescale than words and sentences and unique to bidirectional 
conversational speech. A "turn" was defined as a sequence of utterances 
from a single speaker until the other speaker assumed the leading role, 
regardless of brief interjections or fillers from the listener. We specif
ically tested the human brain’s ability to parse turns and topics based on 
the boundary effect. Specifically, semantic similarity was expected to be 
higher between sentences in the same turn than across different turns, 
and higher between turns in the same topic than across different topics, 
thereby demonstrating a linguistic hierarchy. Three alternative hy
potheses were proposed: First, according to the shared representation 

hypothesis, we predicted that turns and topics would be hierarchically 
represented in conversational speech at both the dyadic and individual 
levels. Furthermore, we expected a cortical architecture with a gradient 
pattern supporting the representation of the linguistic hierarchy in 
conversational speech at both the dyadic (i.e., INS) and individual 
levels. This architecture would likely involve primary auditory and 
motor regions being more closely associated with the representation of 
smaller linguistic units, while associative brain regions such as the pa
rietal and frontal cortices would be more closely associated with the 
representation of larger linguistic units. Second, since turns and topics 
are linguistic units unique to conversations, we hypothesized that these 
levels would exist only in the form of shared representations. In other 
words, no corresponding linguistic hierarchy or related brain responses 
would be observed at the individual level for these linguistic units. 
Finally, the third hypothesis predicted that both the linguistic hierarchy 
and cortical architecture would only be identified at the individual level.

2. Methods

2.1. Participants

Prior to the experiment, G* Power 3.1 was used to estimate the 
required sample size. The analysis revealed that 26 dyads (52 in
dividuals) were necessary to achieve a statistical power of 0.8 with η2

p =

0.25 and α = 0.05 for examining the difference in semantic similarity 
between linguistic units. Finally, 70 healthy adults (36 females) were 
recruited through advertisements in Beijing. The mean age of partici
pants was 22.13 years (standard deviation [SD] = 2.66), and the mean 
years of education was 16.02 (SD = 2.47). All participants were right- 
handed, with no neurological or psychiatric disorders based on self- 
report and had normal or corrected-to-normal vision. Participants 
were randomly paired into 35 same-gender dyads. After data quality 
inspection, 32 and 30 dyads were left with valid data for the Familiar 
and Unfamiliar conditions, respectively.

The study protocol was approved by the Institutional Review Board 
of Beijing Normal University. All participants were provided with 
written informed consent.

2.2. Tasks and procedures

During the task session, first, 20 candidate topics were selected from 
a previous study (Zhou et al., 2023). These topics were assessed to best 
fit into the cultural style of China according to an assessment of 67 
Chinese adults (35 females, mean age = 24.4 ± 2.94), thus providing our 
participants with cues to stimulate a sufficient number of turns during 
the conversation. For each dyad, each participant was requested to 
report their perceived familiarity level with each of the 20 topics on a 
10-point Likert scale (1 representing the lowest level, 10 representing 
the highest level). The scores of two participants in a dyad were aver
aged to obtain a dyadic-level score for topic familiarity. For each dyad, 
the topic perceived to have the highest level of familiarity was used in 
the Familiar condition, while the topic with the lowest level of famil
iarity was used in the Unfamiliar condition. It should be noted that only 
one topic was used for each dyad of each condition based on their report 
on topic familiarity, but different topics might be used for different 
dyads. We used the Kruskal-Wallis H test to examine whether the 
numbers of dyads involved in each topic were balanced.

The experiment was conducted in a quiet room. During the experi
ment, the two participants in a dyad sat across from each other at a table 
in a face-to-face manner (Fig. 1a). Initially, a 5-minute resting-state 
session with eyes closed served as a control session to remove sponta
neous brain activity unrelated to the external stimuli. The task sessions 
immediately followed the resting-state session, during which the dyads 
freely conversed on a topic that was familiar to them for 5 min and 30 s.

Previous studies have indicated that the decrease in the familiarity of 
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a topic can impact the fluency and quality of a conversation, but the 
processing of smaller linguistic units such as turns is not impacted 
(Rivers, 2018). Therefore, participants were additionally asked to freely 
converse on a less familiar topic (Unfamiliar condition). The purpose of 
this condition was to test the distinctiveness of linguistic units such as 
turns, i.e., whether the change in topic familiarity would impact the 
representation of turns, thereby further validating the linguistic hier
archy and cortical representation of turns. The order of the Familiar and 
Unfamiliar conditions was counterbalanced. Additionally, both partici
pants in a dyad were hyperscanned using fNIRS to collect their hemo
dynamic signals in both conditions (Fig. 1a-b). The entire experimental 
procedure was video-recorded for subsequent behavioral analyses.

2.3. fNIRS data acquisition

Two LABNIRS systems (Shimadzu Corporation, Japan) were used to 
collect fNIRS data. For each system, three customized sets of 47 mea
surement channels (CHs) were used to collect data from each participant 
(Fig. 1b). Two sets of probes were used to cover the bilateral frontal, 
temporal, and parietal cortical layers, while the rest were used to cover 
the prefrontal cortex. The anatomical location of each channel was 
determined using the international 10–20 system. Specifically, CH18, 
CH38, and CH47 were placed on T7, T8, and Fpz, respectively. The 
positions of the probe sets were adjusted before the experiment to ensure 
consistency between the two individuals in a dyad and among dyads.

To confirm the anatomical locations of the optode probes, we ob
tained magnetic resonance imaging (MRI) data from 2 female and 2 
male participants who wore plastic caps with the probes’ true positions 
marked using Vitamin E balls. The high-resolution, T1weighted, 
magnetization-prepared, and rapid gradient-echo sequence was used 
(time repetition = 2530 ms; time echo = 3.30 ms; flip angle = 7◦; slice 
thickness = 1.3 mm; in-plane resolution = 1.3 × 1.0 m2; and number of 
inter-leaved sagittal slices = 128). Statistical Parametric Mapping 12 
(Wellcome Department of Cognitive Neurology, London, UK) was used 
to normalize the MRI data to the standard Montreal Neurological 
Institute (MNI) coordinate space. The MNI coordinates of probes were 
generated according to the Automated Anatomical Labelling template 
using the NIRS_SPM toolbox (see Table S1). Based on this information, 
we were able to assess the consistency between the probes’ true posi
tions and the expected anatomical positions and to adjust the probes’ 
true positions. This procedure was repeated several times until the true 
positions and the expected positions reached a high level of consistency, 
e.g., the difference in probabilities was < 10 % for 3 out of 4 scanned 
participants.

The optical density of near-infrared light (780, 805, and 830 nm) was 
measured at a sampling rate of 8.33 Hz. Then, changes in oxyhemo
globin (HbO), deoxyhemoglobin, and total hemoglobin concentration 
were calculated based on the modified Beer–Lambert law. Previous 
research has indicated that oxyhemoglobin is a sensitive marker for 

reflecting changes in local cerebral blood flow and offers a higher signal- 
to-noise ratio (Hoshi, 2007). Therefore, this study focuses solely on the 
HbO signal.

2.4. Behavioral data analysis

2.4.1. The linguistic characteristics of the conversational speech
For the conversational speech, five additional participants who were 

not involved in the conversation task were recruited to transcribe the 
recorded conversational speech into text using Nvivo (version 11) and 
Praat (version 6.3.01) software. For each video, these participants an
notated the onset and offset of each sentence and turn for each inter
locutor. To ensure consistency in transcription, we established strict 
guidelines requiring transcribers to follow a specific protocol (see the 
Supplementary Text 3). This approach guaranteed uniformity among 
transcribers throughout the project. Moreover, during the transcription 
process, various linguistic phenomena, such as empty pauses and filled 
pauses (e.g., "emm", "eeh"), disfluencies (e.g., hesitation, stuttering, 
interruption, mistakes, etc.), were carefully annotated. The proportion 
of these linguistic phenomena was 3.172 ± 2.013 %, and they were 
excluded from all analyses due to their semantic ambiguity for use with 
the PLM.

Based on the transcript, various indexes of the conversation were 
calculated, such as the average duration of sentences and turns, the 
average number of sentences and turns generated by each individual 
participant, and the average number of function and content words in 
sentences and turns. A linear mixed-effect model (LME) was used to test 
the difference in the number of content and function words across 
various topics, with word type (content vs. function words) and topic as 
fixed variables, and participant identity as a random variable.

2.4.2. Vectorized representation of the conversational speech using PLM
The Whole Word Masking (WWM) - RoBERTa model, downloaded 

from HuggingFace (Cui et al., 2021), was used to vectorize the tran
scribed text of conversational speech (Fig. 2a). As a derivation of Bidi
rectional Encoder Representations from Transformers (BERT), this 
model is trained on words rather than characters, making it suitable for 
Mandarin Chinese. This model features 24 layers of blocks, each with 16 
attention heads, a hidden size of 1024, and approximately 340 million 
parameters in total. In the literature, there are two major approaches to 
vectorizing sentences: One uses the special “[CLS]” token to capture the 
overall feature of the input sequence, while the other averages the 
vectors of all words in a sentence to obtain a vectorized representation of 
the sentence. Recent evidence suggests that the method using the 
“[CLS]” token may slightly underperform other approaches in testing 
fMRI prediction capabilities across layers (Anderson et al., 2021). Thus, 
in this study the second approach was employed by averaging word 
vectors from the second-to-last hidden layer. Similar procedures were 
applied to the vector representation of turns by averaging word vectors 

Fig. 1. The setup of the experiment. (a) Each dyad conversed on a topic for 5 min and 30 s. (b) The probe set was placed on the bilateral frontal, temporal, and 
parietal cortical layers. CH18, CH38, and CH47 were placed on T7, T8, and Fpz, respectively, according to the international 10–20 system. Colored areas denote 
regions of interest (ROI). TC: temporal cortex; IFC: inferior frontal cortex; AG: angular gyrus; mPFC: medial frontal cortex.

R. Aili et al.                                                                                                                                                                                                                                      NeuroImage 311 (2025) 121180 

3 



(caption on next page)

R. Aili et al.                                                                                                                                                                                                                                      NeuroImage 311 (2025) 121180 

4 



across all sentences within a turn.
Identification of the linguistic hierarchy by testing the boundary 

effect. To confirm the linguistic hierarchy at the individual level, the 
speech produced by each individual interlocutor was analyzed (Fig. 2b- 
f). Previous studies have shown that when processing continuous stim
uli, such as films or narratives, the brain segments them into discrete 
events with various temporal scales along the hierarchy, and each event 
is marked by a distinct neural population pattern (Baldassano et al., 
2017; Lee and Chen, 2022). In the processing of speech, it is usually 
expected that the similarity between smaller linguistic units (such as 
sentences or turns) within larger units (such as turns or topics) is higher 
than that across larger units, showing a boundary effect (Fig. 2c). 
Therefore, in this study, we tested whether turns or topics in bidirec
tional conversational speech would be segmented, showing the bound
ary effect at both the semantic and brain response levels.

At the individual level, the speech produced by a specific interlocutor 
was extracted. As expected, this speech included multiple turns and 
sentences. At the turn level, based on these vectors, cosine similarity was 
computed between the last sentence of a given turn (e.g., turni) and first 
sentence of all other turns (e.g., turnN-i) and then averaged to index the 
semantic similarity across turns (Fig. 2d) (Hoffman et al., 2018). Cosine 
similarity is a common method for calculating the similarity between 
high-dimensional semantic vectors, as it captures the relationship more 
precisely through the angle between the vectors rather than their 
magnitude (Haxby et al., 2014). A paired two-sample t-test was con
ducted on the averaged semantic similarity between within- and 
across-turns at the group level (i.e., in total 64 individuals). Then, for the 
topic level, similar procedures to the above were applied to the vector 
representation of turns by averaging word vectors across all sentences 
within a turn. Semantic similarity was calculated between a given turn 
of an interlocutor (e.g., Individuali) and all turns of all other individuals 
(e.g., IndividualN-i) who had selected the same topic during their con
versations. Similarities among those turns were further averaged to 
generate an index of the semantic similarity within topics. In a parallel 
manner, semantic similarity was determined between a given turn of an 
interlocutor (e.g., Individuali) and all turns of all other individuals (e.g., 
IndividualN-i) who had chosen different topics. The similarity was also 
averaged across topics and a paired sample t-test was performed on these 
averaged semantic similarities between within- and across- topics at the 
group level (i.e., in total 64 individuals).

Next, the same analyses were conducted at the dyadic level, where 
the speech vectors produced by both interlocutors in a dyad were used 
(Fig. 2h). At the turn level, the semantic similarity of sentences within 
turns was calculated in the same manner as that of the individual level 
but was then averaged between the two interlocutors of a dyad, gener
ating an index of the dyadic-level semantic similarity within turns. To 
calculate the semantic similarity across turns, the similarity was calcu
lated between each sentence for individual A in a given turn (e.g., turni) 
and all sentences from other turns (e.g., turnN-i) within the same inter
locutor A or individual B. These similarity values were then averaged to 
derive the semantic similarity of across turns for interlocutor A. Finally, 
the values from both interlocutors (i.e., interlocutors A and B) were 

averaged to produce an index of dyadic-level sentence similarity for 
across turns. For topic level, the calculation of semantic similarity was 
the same as at the individual level, but the similarity was averaged be
tween the two interlocutors of a dyad, generating indexes of the dyadic- 
level turn similarity both for within and across topics. Finally, paired 
sample t-tests were conducted to compare semantic similarities between 
within and across turns, as well as between within and across topics 
(Fig. 3d-e).

2.4.3. Validation of the linguistic hierarchy by testing the incremental 
context effect

A recent study (Schapiro et al., 2013) suggested that the similarity 
between linguistic units or events declines as the interval between units 
increases, showing an incremental context effect (Fig. 2c). Here we 
further predicted that, with the increasing number of turns within an 
interval, the semantic similarity between turns would decline.

To test this, we defined different lengths of intervals (i.e., 0, 1, 2, 3 
and ≥ 3) to depict the increase in context length (Fig. 2f). For turns at 
the individual level (Fig. 2g-ii), when interval = 0 (i.e., within turns), 
semantic similarity was calculated between the last sentence and the 
first sentence of turni within the same interlocutor. For interval = 1, 
semantic similarity was calculated between the last sentence of turni and 
the first sentence of turni+1 within the same interlocutor. When interval 
= 2, 3, or ≥3, semantic similarity was calculated between the last sen
tence of turni and the first sentence of turni+2, turni+3, turni+4, etc., 
within the same interlocutor. The similarity of turns was further aver
aged for each interval within an interlocutor.

At the dyadic level, the turns produced by both interlocutors were 
concatenated into a single speech stream and coded as i, i + 1, i + 2, i +
3, i + 4, …, N (Fig. 2h). Turns coded with odd numbers were produced 
by interlocutor A, while those coded with even numbers were produced 
by interlocutor B. At the turn level (Fig. 2i-ii), interval = 0 (i.e., within 
turn) referred to the semantic similarity between the last sentence and 
the first sentence of turni by the same interlocutor A or B. Interval = 1 
referred to the semantic similarity between the last sentence of turni 
produced by interlocutor A and the first sentence of turni+1 produced by 
interlocutor B. Interval = 2 indicated the semantic similarity between 
the last sentence of turni of interlocutor A and the first sentence of 
turni+2 also produced by interlocutor A. The same principle of calcula
tion was applied to other intervals. The similarity was then further 
averaged for each interval.

A permutation test was employed to determine the statistical sig
nificance of semantic similarity for each interval. This test was con
ducted by randomly shuffling the order of each participant’s turns and 
then recalculating the semantic similarity. This procedure was repeated 
1000 times to generate a null distribution, and the p-value significance 
was obtained based on the position of the true value in the null distri
bution (p < 0.05). Next, the same procedure was employed to calculate 
the potential differences between the null distributions of different in
tervals. The position of the actual difference within the null distribution 
was used to compute the p-value. Pairwise comparisons were also con
ducted among different intervals (Fig. 3e-ii). The False Discovery Rate 

Fig. 2. The analytic pipeline of the linguistic hierarchy. (a) Vectorized representation of the conversational speech using PLM. (b) Hypothesized linguistic hierarchy 
in the speech. Sentences spoken by individual interlocutors (indicated by green and blue lines for different speakers) are chunked into turns and co-represented at the 
dyadic level (shown by the orange line). Turns are further segmented into topics (shown by the red line), which are also co-represented at the dyadic level, forming a 
linguistic hierarchy. (c) The illustrated semantic similarity matrix. Each grid represents cosine similarity between different sentences produced in conversation. Based 
on the hypothesized linguistic hierarchy, smaller units (i.e., sentences and turns) within the same larger units (i.e., turns and topics) should exhibit higher similarity 
than those across larger units, demonstrating a boundary effect. Additionally, the similarity between adjacent sentences or turns within the same turn or topic should 
be higher than that between non-adjacent ones, demonstrating a gradual decrease in similarity as the interval between them increases, showing the incremental 
context effect. (d-e) A demonstration of the relationship between linguistic units in the hierarchy. Gray circles represent different turns (d) or topics (e), with black 
dots within each circle denoting different sentences (d) or turns (e). Orange dashed lines signify "across", while green solid lines represent "within". (f) Calculating the 
semantic similarity at the individual level. The blue icon is focused as an example. (g) Incremental context effect at the individual level. Intervals between turns were 
coded as 1, 2, 3, and ≥3, respectively, and semantic similarity between each interval was calculated. (h) Calculating the semantic similarity at the dyadic level. In this 
case, both the blue and grey icon are focused. (i) Incremental context effect at the dyadic level. Intervals between turns were coded as 1, 2, 3, 4, and ≥4, respectively, 
and semantic similarity was calculated for at each interval.
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(FDR) method was used to correct for multiple comparisons (Fig. 3e).
For the incremental context effect of topics, at the individual level, 

semantic similarity was calculated between turni and turni+n of the same 
interlocutor; however, there was no within turn, i.e., interval = 0. The 
similarity of sentences or turns was further averaged within an inter
locutor for each interval. Then, at the dyadic level, interval = 1, 2, 3, 4, 
and ≥4 indicated the semantic similarity between turni and turni+1, 
turni+2, turni+3, etc. The similarity was then further averaged across 
dyads for each interval. The permutation tests as same as above were 
conducted.

2.5. fNIRS data analyses

2.5.1. Preprocessing
First, we conducted a quality check on the fNIRS data. In this study, 

sliding time windows with a length of 15 s were used to inspect artifacts. 
Data points lying beyond 3 standard deviations within the sliding win
dow were identified as artifacts. If the artifact percentage of a channel 

exceeded 5 %, that channel was marked as bad. A participant was 
excluded if the proportion of bad channels exceeded 30 % of the total 
number of channels. No individuals or channels were excluded at this 
step.

Secondly, data from the first and last 15 s of each session were 
removed before preprocessing to ensure the fNIRS signals to reach a 
steady state. Then, the HbO data were detrended and corrected for 
motion artifacts using Discrete Wavelet Transformation method. Next, 
to remove global physiological noises such as changes in scalp blood 
flow, Principal Component Analysis (PCA) was applied to eliminate the 
first 80 % of signal variability. Additionally, a band-pass filter (0.01–0.5 
Hz) was utilized to exclude high-frequency noise and low-frequency 
physiological noise.

2.5.2. Definition of ROIs
To increase statistical power in subsequent analyses, channels that 

passed the statistical tests of RSA were grouped into ROIs. According to 
the Automated Anatomical Labeling (AAL) atlas (Tzourio-Mazoyer 

Fig. 3. (a) Participants’ rating of familiarity on each of the 10 topics, with each dot representing a participant. (b) As expected, a significant difference was found 
between familiar and unfamiliar conditions in familiarity scores. Linguistic hierarchy of the conversational speech in the Familiar condition. (c-e) and (f-h) show 
results at the individual and dyadic levels, respectively. (c-d) and (f-g) show boundary effects of both turns and topics. Semantic similarity between sentences was 
significantly higher within turns (green) than across turns (orange). Similarly, the semantic similarity of turns was significantly higher within topics (green) than 
across topics (orange). In (e) and (h), semantic similarity between turns declines as the interval between them increases, showing an incremental context effect. The 
left panel shows the decline in semantic similarity as the interval increases at the turn or topic level. The gray dashed line represents the chance level. Notably, each 
interval has its own chance level, here we averaged across intervals for visualization purpose. The right panel indicates the statistical significance in pairwise 
comparisons between intervals. The results in both (e) and (h) are corrected using the FDR method (q < 0.05). **, p < 0.01; ***, p < 0.001.
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et al., 2002), channels were assigned to specific ROIs based on their MNI 
coordinates. A channel was categorized into an ROI if the probability of 
its MNI coordinate falling within the corresponding brain region 
exceeded 50 %. The preprocessed signals from all channels within each 
ROI were then averaged. Four ROIs were identified: the temporal cortex 
(TC), medial prefrontal cortex (mPFC), inferior frontal cortex (IFC), and 
angular gyrus (AG) (Fig. 1b).

2.5.3. RSA at the individual level
To investigate the cortical representations of the linguistic hierarchy 

in conversational speech, RSA was conducted (Kriegeskorte, 2008) to 
assess the relationship between linguistic similarity (i.e., turns or topics) 
and brain similarity at both the individual and dyadic levels (Fig. 4a). At 
the individual level, each interlocutor was analyzed either as a speaker 
when producing speech or as a listener when listening to the speech 
produced by their partner (Fig. 4c-d). For each interlocutor, a turn-level 
representational similarity matrix (RSM) was constructed by calculating 
the semantic similarity between the last sentence of each turn and the 
first sentence of all other turns. In this matrix, only the values at the 
lower triangle and the diagonal positions were used for the RSA. It 
should be noted that the values at the diagonal positions of the sentence 
matrix represent the semantic similarity between the first and last sen
tences of a turn, and thus they were included in the RSA, generating an 
individual-level semantic RSM. Next, an individual-level brain RSM was 
also built by calculating the similarity of preprocessed HbO signals 
corresponding to the sentences in the semantic RSM mentioned above.

For analyzing brain activity signals, the traditional approach in
volves using Pearson correlation to calculate the similarity between 
brain activities, a method widely used for measuring neural activity 
patterns during natural stimuli processing (Hasson et al., 2004). How
ever, due to the varying lengths of individuals’ turns, we employed the 
Dynamic Time Warping (DTW) method to calculate the distance be
tween brain signals of varying turn lengths. DTW is a distance mea
surement method that can align signals of different lengths, which 
cannot be achieved using Pearson correlation, by finding an optimal 
match between them and then calculating the Euclidean distance. Spe
cifically, the "dtw" function in Python (from the dtw-python package, 
version 1.3.1) was used (Giorgino, 2009). DTW measures the distance 
between two time series, always resulting in a value greater than 0, and 
allows for the calculation of similarity between two time series of un
equal length by aligning sequences non-linearly, accommodating the 
dynamic nature of conversational speech (Silbert et al., 2014; Yamauchi 
et al., 2015). Additionally, we have multiplied the value obtained from 
DTW by − 1, whereby converting the measure from distance to simi
larity, i.e., the larger the values, the greater the similarity.

To further validate the DTW’s effectiveness, we conducted a random 
pair permutation test. In each permutation, we calculated the DTW 
similarity between adjacent sentences across turns (corresponding to an 
interval of 1). Then, we randomly re-paired the interlocutors within 
each of the dyads to form 32 fake dyads and recomputed the DTW 
similarity between interval of 1. The number of turns for each fake dyad 
was determined by the interlocutor with the fewer turns. This process 
was repeated 1000 times to generate null distributions for similarity. A 
significantly higher DTW similarity in true dyads compared to fake 
dyads (i.e., the null distribution) would indicate that DTW is a valid 
metric capturing neural similarities across sentences of varying lengths.

Similarly, the topic-level RSM was also built by calculating the cosine 
similarity between the turns of an interlocutor and all other turns of the 
same interlocutor. In this case, only the values in the lower triangle of 
the matrix were used for RSA. A brain-level RSM was also built by 
calculating the similarity of preprocessed HbO signals corresponding to 
the turns in the turn RSM using the DTW method. We also validated 
DTW at the topic level by performing a random pair permutation test, 
whereby the DTW similarity between adjacent turns was computed 
(interval = 1). This allowed us to assess whether the DTW similarity in 
true dyads was significantly different from that in fake dyads at the topic 

level, further confirming the method’s suitability in capturing neural 
similarities across turns of varying lengths.

Finally, Spearman correlation was applied between the semantic 
RSM for turns and topics and the corresponding brain RSMs, obtaining a 
correlation coefficient for each interlocutor at each linguistic level and 
each fNIRS channel. To determine the statistical significance of these 
correlation coefficients, a matrix-shuffled permutation test was 
employed, which involved randomly shuffling the rows and columns of 
the brain RSM to generate a random matrix. A null Spearman correlation 
was then calculated between the original semantic RSM and the shuffled 
brain RSM. This procedure was repeated 1000 times to generate a null 
distribution, and the statistical significance for each channel was 
calculated using the one-tail equation: p =

1 + number of null r values ≥ empirical r
1 + 1000 (Song et al., 2021). The FDR method 

was used to correct for multiple comparisons across all fNIRS channels (q 
< 0.05, Fig. 4c-d).

2.5.4. RSA at the dyadic level
At the dyadic level, the RSM construction slightly differs from the 

single-brain perspective, as it incorporates neural coupling between two 
interlocutors (Fig. 4e).

For turns, a semantic RSM was constructed by calculating the se
mantic similarity between the last sentence of each turn and the first 
sentence of all other turns. In this matrix, only the values in the lower 
triangle and diagonal positions were used for RSA. A brain-level RSM 
was also built by calculating the Pearson correlation of preprocessed 
HbO signals corresponding to the sentences in the sentence RSM. Dif
ferences in coupling between sentences were assessed using this 
correlation.

For topics, for each dyad, a turn-by-turn semantic similarity matrix 
was constructed by calculating the cosine similarity between the se
mantic vectors of each pair’s turns. The matrix is organized in an 
alternating turn sequence (A1-B1-A2-B2, etc.), where ’A’ and ’B’ denote 
the two interlocutors and the numbers represent the n-th turn. We 
analyzed only the lower triangle of the matrix, excluding diagonal ele
ments to avoid assessing similarity within the same individual’s turn. 
Similarly, HbO signals are organized according to the same turn 
sequence. Since the time series had equal lengths in this step, we used 
Pearson correlation to calculate the similarity of brain activity instead of 
DTW as, for the time-aligned signals, DTW could introduce unnecessary 
path adjustments, potentially distorting the global relationship by 
overemphasizing local variations (Keogh et al., 2004). Specifically, we 
calculated the INS during each conversational turn, where one partici
pant was speaking and the other listening, and used the difference in 
coupling between turns to construct the RSM, with rows and columns 
representing the differences in coupling between turns.

Finally, Spearman correlation was applied between the semantic 
RSM (for sentences or turns) and the corresponding brain RSM, 
obtaining a correlation coefficient for each dyad at each linguistic level 
and each fNIRS channel. The subsequent statistical analysis, including 
the application of a matrix shuffle permutation test to determine sig
nificance and the FDR method for multiple comparisons correction, 
follows the methodology described previously at the individual level (q 
< 0.05, Fig. 4e).

2.5.5. Reconstructing the linguistic hierarchy from the cortical 
representation

To further elucidate the cortical representation of turns and topics, 
we investigated the linguistic hierarchy as previously mentioned using 
brain activity. This analysis was only conducted on the ROI at the dyadic 
level because we did not find any cortical architecture at the individual 
level (Fig. 2h). The same procedure used in linguistic data analysis was 
employed for the HbO signal by calculating the DTW distance. 
Furthermore, to facilitate comparison, we converted the DTW distance 
into a normalized similarity. It should be noted that HbO signals from 
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speech produced by both interlocutors of a dyad were used. To avoid the 
problem of autocorrelation in the HbO signals, instead of comparing 
interlocutor A’s brain activity in sentence 1 to his/her own activity in 
sentence 2, interlocutor A’s brain activity in sentence 1 was correlated to 
interlocutor B’s brain activity in sentence 2.

For turns, brain similarity of sentences within turns was calculated in 
the same manner as at the linguistic dyadic level, but we employed the 
DTW method to calculate brain similarity due to the varying length of 
sentences. Similarly, brain similarity across turns was further averaged 
between the two interlocutors in a dyad, generating an index of dyadic- 
level brain similarity for across turns. For topics, the calculation of brain 
similarity was consistent with that at the individual level but was further 
averaged between the two interlocutors in a dyad, generating indexes of 
dyadic-level turn similarity for within and across topics. Finally, paired 
t-test were conducted to compare brain similarities within and across 
turns, as well as within and across topics (Fig. 5b, e, h, k).

Finally, we validated the results of the incremental effects into a 
hierarchical structure matrix of the brain by comparing the significant 
differences between each interval condition. We then compared this 
brain-decoded hierarchical structure matrix to the previously identified 
linguistic hierarchical structure matrix (Fig. 3h-ii), using the Jaccard 
similarity method (Maitra, 2010) to evaluate the correlation between 
the two (Fig. 5d, g, j, m). To determine the statistical significance of the 
correlation, a permutation test was employed, which involved randomly 
shuffling the linguistic hierarchical structure matrix. This procedure was 
repeated 1000 times to generate a null distribution, and the significance 
of p-value was obtained based on the position of the true value in the 
null distribution (p < 0.05).

2.6. Distinctiveness of linguistic units with different timescales

To validate the results in the Familiar condition and examine the 
distinctiveness of turns compared to topics, the same procedures were 
repeated in the Unfamiliar condition. Previous evidence suggests that 
low topic familiarity might hinder the anticipatory processing of up
coming semantic information (Brothers et al., 2015; Park et al., 2023). 
Based on this perspective, we predicted that low familiarity of the topic 
might impact the cortical representation of topics in this study but might 
not impact that of turns. To test this assumption, first, we applied the 
same analytic procedures as above (see the Supplementary Text and 
Fig. S1) and replicated the linguistic hierarchy of the conversational 
speech in the Unfamiliar condition. Second, based on cortical architec
ture identified in the Familiar condition, we aimed to reconstruct the 
hierarchical structure of the conversational speech from brain activity in 
the Unfamiliar condition. Again, this analysis was only conducted at the 
dyadic level. Moreover, a cross-reconstruction test was performed at 
both the turn and topic levels in the same way as above.

3. Results

3.1. The linguistic characteristics of the conversational speech

On average, each topic involved 3 dyads (SD = 1.011) in both the 
Familiar and Unfamiliar conditions (Fig. 3a). The Kruskal-Wallis H test 
was conducted to examine whether there was a significant difference 
among topics in the number of dyads involved, but no significant dif
ferences were found either in the Familiar (H(9) = 8.991, p = 0.432) or 
Unfamiliar condition (H(9) = 8.991, p = 0.431). Also, no significant 
difference was found between the Familiar and Unfamiliar conditions in 
the number of dyads each topic involved (H(9) = 0.324, p = 0.576). 
Moreover, as expected, a paired sample t-test showed a significant dif
ference between Familiar and Unfamiliar conditions regarding the fa
miliarity scores (t(31) = 5.050, p < 0.001, Cohen’s d = 0.850, Fig. 3b).

The conversational speech was transcribed into text, and then 
various features were extracted to characterize each interlocutor’s 
speech. In the Familiar condition, the average duration of sentences 
produced by an interlocutor was 7.34 s (SD = 2.282), while the average 
duration of turns was 19.25 s (SD = 10.342). Additionally, on average, 
each interlocutor produced 9.21 turns (ranging from 4 to 22, SD =
4.721) and 24.42 sentences (SD = 7.221), with each sentence involving 
5.90 function words (SD = 3.621) and 6.21 content words (SD = 3.012). 
Each turn comprised, on average, 23.42 function words and 25.10 
content words (SD = 15.020 and 14.210, respectively). LME analysis 
revealed no significant differences in the number of content and function 
words across topics or word types. The results did not show any signif
icant effects (main effect of word type: F(1, 954) = 0.781, p = 0.435, η2

p 

= 0.012; main effect of topic: F(9, 954) = 1.079, p = 0.281, η2
p = 0.010; 

interaction between word type and topic: F(9, 954) = 0.306, p = 0.759, 
η2

p = 0.002). The results of the Unfamiliar condition were reported in 
supplementary materials (SM).

3.2. The linguistic hierarchy of the conversational speech

First, a paired two-sample t-test was conducted on the averaged se
mantic similarity between within- and across-turns at the group level (i. 
e., in total 64 individuals). As expected, our results showed significantly 
higher semantic similarity between sentences within turns than across 
turns (t(62) = 8.170, p < 0.001, Cohen’s d = 1.101, Fig. 3c). For topics of 
each interlocutor, consistent results with that of turn were obtained in 
that the semantic similarity within topics was significantly higher than 
that across topics (t(62) = 5.831, p < 0.001, Cohen’s d = 0.772, Fig. 3d).

Next, the same analyses were conducted at the dyadic level. Here it 
should be noted that the speech vectors produced by both interlocutors 
in a dyad were used. The results showed that the semantic similarity was 
significantly higher within turns than across turns (t(31) = 3.552, p <
0.01, Cohen’s d = 0.634, Fig. 3f). Similarly, for topics, the semantic 
similarity was significantly higher within topics than across topics (t(31) 
= 2.816, p < 0.01, Cohen’s d = 0.502, Fig. 3 g). These findings 
confirmed the linguistic hierarchy presented in the speech both at the 

Fig. 4. The cortical representations of the hierarchical structure of conversational speech. (a) Representational Similarity Analysis (RSA) pipeline. At the individual 
level, we first extracted the semantic vector of sentence/turn of each participant and constructed a semantic RSM by calculating the cosine similarity between 
sentences or turns. Then, we extracted brain activity for each sentence or turn, and calculated the similarity between brain activities through Dynamic Time Warping 
(DTW), and constructed a brain activity RSM. Finally, a spearman correlation was performed between the semantic RSM and the brain activity RSM for each 
interlocutor. Statistical significance was determined using a permutation test and corrected for multiple comparisons using the FDR method (q < 0.05). At the dyadic 
level, the main RSA pipeline was the same as at the individual level, but both semantic and brain RSMs were constructed based on the turn-taking sequence of speech 
of two interlocutors (shown as left panel in d). Brain activity similarity was indicated by the difference of INS, which was calculated by Pearson correlation. (b) 
Validation on the effectiveness of DTW through comparing DTW similarity between true dyads and fake dyads in the left TC and mPFC at both the turn and topic 
levels. Histograms represent the null distributions of DTW similarity derived from 1000 permutations of randomly paired fake dyads. The red vertical line indicates 
the DTW similarity of true dyads. The green vertical line marks the 95th percentile of the null distribution, serving as the significance threshold. (c-d) RSA results for 
the listener and speaker. Yellow indicates significant brain representation at the turn level, blue indicates significant brain representation at the topic level, and green 
represents brain regions involved in both levels (i.e., overlapping regions). The violin plots illustrate the differences in representational strength between the turn and 
topic levels. (e) RSA results for dyads. For (c-e), only the results survived the FDR correction are shown. *, p < 0.05; **, p < 0.01; ***, p < 0.001.
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individual and dyadic levels.

3.3. The incremental context effect

The results showed that the semantic similarity was significantly 
higher when there was no interval (i.e., within turns) than when in
tervals ≥1 (i.e., the semantic similarity between the last sentence of the 
turni and the first sentence of the turni+1, turni+2, turni+3, etc., within the 
same interlocutor) as well as the chance level (Fig. 3e-i, ps < 0.05, FDR 
corrected). There was a trend of gradual decrease in the semantic sim
ilarity though no significant differences were found between pairs of 

intervals (ps > 0.05, Fig. 3e-ii).
At the dyadic level, intervals between turns were coded as 1, 2, 3, 4 

and ≥4, respectively. Odd intervals like 1, 3, and 5 indicate turns from 
different interlocutors, while even intervals like 2, 4, and 6 indicate 
turns from the same interlocutor. As expected, the semantic similarity 
when there was no interval (i.e., within turns) was significantly higher 
than when the interval ≥ 1 (see Materials and Methods, and Fig. 2i) as 
well as the chance level (Fig. 3h, p < 0.05, FDR corrected). Moreover, 
the semantic similarity when the interval was 1 (i.e., between the 
different interlocutors) was significantly higher than that when the in
terval = 3 (i.e., between the different interlocutors, p = 0.007), 

Fig. 5. Reconstruction of the linguistic hierarchy from brain activity in the Familiar condition. (a) The analytic pipeline. (b) and (h) The boundary effect of turns/ 
topics reconstructed from the left TC. (c) and (i) The incremental effect reconstructed from the left TC. (d) and (j) The correlation was calculated between the left TC 
reconstructed linguistic hierarchy and the original linguistic hierarchy using the Jaccard method. (e-g) and (k-m) show the same results in the mPFC. n.s. represent 
non-significant results. *, p < 0.05; **, p < 0.01.
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suggesting a significant trend of gradual decrease in semantic similarity.
For the topic level, semantic vectors were averaged across sentences 

within each turn, and similarity was calculated between turns of the 
same interlocutor within the same topic. As expected, semantic simi
larity of turns declined as the interval length increased (Fig. 3e-i). Se
mantic similarity was significantly higher when interval = 1 than when 
interval > 3 (p ≤ 0.006) as well as the chance level (Fig. 3e-ii, p = 0.006, 
FDR corrected). No other significant differences were found (ps > 0.05, 
FDR corrected, Fig. 3e-ii).

At the dyadic level, a similar pattern was found (Fig. 3h); that is, the 
semantic similarity when the interval = 1 was significantly higher than 
when the interval ≥ 3 (p = 0.009 for interval 1 vs. interval 3, p = 0.039 
for interval 1 vs. interval 4) as well as the chance level (ps < 0.05), but 
none was found between interval = 1 (within the same interlocutors) 
and interval = 2 (between different interlocutors) (p = 0.65). These 
results suggested that the linguistic hierarchy of the bidirectional 
conversational speech is not only presented in the individual interloc
utor but also shared by the dyadic interlocutors.

3.4. The cortical representations of the linguistic hierarchy of the 
conversational speech

At the individual level, the results from the listener indicated that the 
representation of smaller unit such as turns was significantly associated 
with the right temporal cortex (TC: CH40), left inferior frontal cortex 
(IFC: CH5), and medial prefrontal cortex (mPFC: CH42), while that of 
larger unit such as topics was associated with the right primary motor 
cortex (PMC: CH22), angular gyrus (AG: CH28, CH29) and mPFC (CH41, 
CH42) (Fig. 4c). Results from the speaker showed that the representa
tion of turns was significantly associated with the bilateral TC (CH18, 
CH36 and CH38), left AG (CH12, CH13) and mPFC (CH41, CH43), while 
that of topics was associated with the left PMC (CH2), right IFC (CH30), 
left AG (CH12) and mPFC (CH44, CH47) (Fig. 4d).

We further examined the representational specificity of these brain 
regions in processing turns or topics. A permutation test on ROIs 
revealed that, in the listener, significantly higher cortical representation 
of turns compared to topics was found in the left IFC (mean difference: 
0.172, p < 0.001) and right TC (mean difference: 0.165, p = 0.003, 
Fig. 4c). In the speaker, significantly higher cortical representation of 
turns than topics was found in the bilateral TC (left: mean difference: 
0.16, p = 0.002; right: mean difference: 0.183, p < 0.001, Fig 4d). No 
significantly higher representation of topics than turns was found either 
in the speaker or the listener (ps > 0.05). These findings suggested that, 
at least at the individual level, there was no selective brain response to 
linguistic units with different time scales.

Next, to investigate the cortical representation of conversational 
speech at the dyadic level, RSA was conducted similarly to the indi
vidual level, with both semantic and brain RSMs constructed for the 
turn-taking sequences of two interlocutors, reflecting joint conversa
tional activity (see Materials and Methods, Fig. 4e). The results showed 
that the representation of turns was significantly associated with the left 
TC (CH14), while that of topics was significantly associated with the 
right AG (CH32) and mPFC (CH43) (Fig. 4e).

Finally, an ROI-based contrast between turns and topics revealed at 
the dyadic level that the cortical representation for turns was signifi
cantly higher than that of topics in the left TC (mean difference: 0.071, p 
< 0.001); On the contrary, the cortical representation of topics was 
significantly higher than that of turns in the mPFC (mean difference: 
0.062, p = 0.048). No significant difference was found in the right AG 
(mean difference: 0.020, p > 0.05). These findings further supported the 
first hypothesis, i.e., the linguistic hierarchy of the conversational 
speech was co-represented by a gradient cortical architecture from TC 
(turns) to mPFC (topics) at the dyadic level.

Additionally, to validate the effectiveness of DTW in capturing 
neural similarities between brain signals of varying lengths, we per
formed random pair permutation tests at both the turn and topic levels. 

Based on above findings, we selected the left TC and mPFC as the ROIs 
for the current validation analysis. At the turn level, the results 
demonstrated that, in the left TC, true dyads exhibited significantly 
higher DTW similarity compared to fake dyads (p = 0.019), but none 
was observed in the mPFC (p = 0.146, Fig. 4b bottom). At the topic level, 
true dyads showed a marginally significant increase in DTW similarity in 
the mPFC (p = 0.059), but no such pattern was found in the left TC (p =
0.132, Fig. 4b top). These findings supported the DTW as an effective 
metric in individual-level RSA analysis.

3.5. Reconstruction the linguistic hierarchy from the cortical 
representation

First, at the turn level, the results only showed a significant boundary 
effect in the left TC (t(31) = 2.320, p = 0.030, Cohen’s d = 0.425, 
Fig. 5b). A significant incremental effect was also only found in the left 
TC, i.e., a trend of gradual decrease of the semantic similarity though no 
significant differences were found between pairs of intervals (ps > 0.05, 
Fig. 5c). To further examine the association of the incremental effect 
reconstructed from the brain with that calculated from the semantic 
embeddings of the conversational speech, we also calculated the cor
relation between the brain-reconstructed linguistic hierarchy (Fig. 5d) 
and the original linguistic hierarchy (Fig. 3e-ii) using the Jaccard simi
larity method (Maitra, 2010). The results showed a significant similarity 
compared to the chance level (J = 0.714, two-tailed permutation test, p 
= 0.002, Fig. 5d).

Second, at the topic level, a significant boundary effect was only 
found in the mPFC (t(31) = 2.314, p = 0.020, Cohen’s d = 0.413, 
Fig. 5k). An incremental effect was also observed in the mPFC between 
interval=1 (the most adjacent turns between interlocutors) and interval 
≥ 3 (between interlocutors, Fig. 5l). Notably, no significant difference 
was found between interval = 1 (between interlocutors) and interval = 2 
(within interlocutors) (p > 0.05). We also found significant similarity 
between the linguistic hierarchy (Fig. 3e-ii) identified from the 
conversational speech and that reconstructed from the mPFC activity (J 
= 0.600, p = 0.012, Fig. 5m).

Finally, a cross-reconstruction analysis was conducted to test 
whether the left TC activity could reconstruct the boundary and incre
mental effects of topics, while mPFC activity could reconstruct those of 
turns. However, the results showed that in the mPFC, neither the 
boundary effect (t(31) = 0.352, p = 0.731, Cohen’s d = 0.063, Fig. 5e) 
nor the incremental effect (ps > 0.05, FDR corrected, Fig. 5f) reached 
significance. There was not a significant correlation between the 
reconstructed and original linguistic hierarchy, either (J = 0, p > 0.05, 
Fig. 5g). Similarly, in the TC, there was no significant boundary effect (t 
(31) = 1.352, p = 0.190, Cohen’s d = 0.246, Fig. 5h), nor was there an 
incremental effect (ps > 0.05, FDR corrected, Fig. 5i). No significant 
correlation was found, either (J = 0, p > 0.05, Fig. 5j). These findings 
further supported the close associations between the gradient pattern of 
the cortical representations from the TC to mPFC and the linguistic 
hiearchy from turns to topics in the naturalistic conversational speech.

3.6. Distinctiveness of linguistic units with different timescales

First, the results replicated the linguistic hierarchy of the conversa
tional speech in the Unfamiliar condition. Second, based on cortical 
architecture identified in the Familiar condition, we aimed to recon
struct the hierarchical structure of the conversational speech from brain 
activity in the Unfamiliar condition. Again, this analysis was only con
ducted at the dyadic level. The results showed significantly higher 
similarity in brain activity of the left TC within turns than across turns (t 
(58) = 2.684, p = 0.013, Cohen’s d = 0.352, Fig. 6a). An incremental 
effect also reached significance (Fig. 6b). Moreover, a significant cor
relation was found between the original linguistic hierarchy (Fig. S1f) 
and the brain-reconstructed linguistic hierarchy (Permutation two- 
tailed test, J = 0.830, p = 0.008, Fig. 6c). As expected, no significant 
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results were found at the topic level in the mPFC between within and 
across topics (t(58) = − 0.756, p = 0.451, Cohen’s d = − 0.090, Fig. 6j), 
and neither an incremental effect (ps > 0.05, Fig. 6k) nor a significant 
correlation was found (J = 0, p > 0.05, Fig. 6l).

Moreover, a cross-reconstruction test was performed at both the turn 
and topic levels in the same way as above. Consistent with the Familiar 
condition, at the turn level, the mPFC was unable to reconstruct the 
difference between within and across turns (t(29) = − 0.462, p = 0.632, 
Cohen’s d = − 0.081, Fig. 6d), and neither an incremental effect (ps >
0.05, Fig. 6e) nor a significant correlation was found (J = 0, p > 0.05, 
Fig. 6f). At the topic level, the left TC could not reconstruct the differ
ence between within and across topics (t(29) = − 0.492, p = 0.621, 
Cohen’s d = − 0.090, Fig. 6g), and neither an incremental effect (ps >
0.05, Fig. 6h) nor a significant correlation was found (J = 0, p > 0.05, 
Fig. 6i). Together, these findings suggested that the topic familiarity 
only modulated the higher levels of the linguistic hierarchy and vali
dated the representational distinctiveness between turns and topics.

4. Discussion

In this study, the hierarchical linguistic structure of the natural 
language was empirically tested, for the first time, in the bidirectional 

conversational speech. While it has been demonstrated that our brain 
can parse the natural language into smaller elements during speech 
comprehension, most previous studies focus primarily on narrative 
comprehension, only involving a unidirectional transfer of information 
between individuals (Salazar et al., 2021). In this situation, speech tends 
to be well-formed (Chafe and Danielewicz, 1987), allowing for a clear 
depiction of the linguistic hierarchy. On the contrary, conversational 
speech is characterized by its dynamic, interactive, and often non-linear 
nature, with limited evidence of the linguistic hierarchy (Levinson, 
2016). In a conversation, interlocutors continuously update their rep
resentations of each other’s intention through reciprocal exchanges of 
linguistic information and adjust their behaviors (Levinson and Torreira, 
2015; Pickering and Garrod, 2004), which presents unique challenges in 
discerning the linguistic hierarchy in the conversational speech. In our 
study, we provided original evidence, through employing the PLM to 
characterize the features of turns and topics, for the linguistic hierar
chical principle in the bidirectional conversational speech, addressing a 
significant gap in the literature.

Second, we revealed a gradient pattern of the cortical architecture 
supporting the representation of the linguistic hierarchy in the conver
sational speech at the dyadic level, being consistent with the second 
hypothesis as well. Previous studies on the brain representation of 

Fig. 6. Reconstruction of the hierarchical structure from brain activity in the Unfamiliar condition. (a) and (g) The boundary effect of the left TC activity at turn or 
topic level. (b) and (h) The incremental effect in the left TC. (c) and (i) Jaccard similarity in the left TC. (d-f) and (j-l) shows the same results in the left mPFC. n.s. 
represents not significant. *, p < 0.05; **, p < 0.01.
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narrative language have majorly used the feature of the temporal 
receptive window (i.e., the TRW) (Caucheteux et al., 2023) with tech
nologies such as fMRI (Deniz et al., 2021), EEG and magnetoencepha
lography (MEG) (Ding et al., 2016; Keitel et al., 2018). These studies 
have elucidated a gradient cortical architecture where smaller linguistic 
units carrying less information are represented and processed in primary 
cortical areas (such as auditory and motor areas), whereas larger lin
guistic units carrying more information are processed in higher-order 
associative cortical layers (such as the angular gyrus, frontal lobes, 
and the default mode network). For instance, researchers employed 
fMRI to record participants’ brain responses while listening to stories, 
revealing that different levels of the cortical architecture are responsible 
for processing linguistic units across various temporal scales (Lerner 
et al., 2011). However, no studies have yet explored the linguistic hi
erarchy of the conversational speech and the complex pattern of brain 
responses to the bidirectional flow of information in the conversation. 
The present results, for the first time, revealed such a cortical architec
ture at the dyadic level, suggesting that a spatially gradient cortical 
architecture underlies the dynamic updates and reciprocity occurring 
between interlocutors during a bidirectional conversation.

Additionally, in this cortical architecture, the left TC was found to be 
more associated with the representation of turns, while the mPFC was 
more associated with the representation of topics, showing a gradient 
pattern of cortical representation. The left superior temporal cortex 
(STC) has been widely recognized in previous studies as a primary 
structure involved in auditory speech processing compared to non- 
speech or unintelligible speech (Binder et al., 2000), which clearly dis
tinguishes its functional role from that of the primary auditory cortex 
(Hamilton et al., 2021). The STC is particularly sensitive to the extrac
tion of semantic (Devauchelle et al., 2009) and syntactic features 
(Friederici et al., 2000) from speech and the integration of 
lexical-semantic and syntactic information (Awad et al., 2007). On the 
other hand, the mPFC plays a crucial role in social cognition, particu
larly in understanding and inferring the mental states of others (Van 
Overwalle and Baetens, 2009). Previous studies have found that bilat
eral dorsolateral and inferior prefrontal areas show increased activation 
as sentences became less causally related (Ferstl et al., 2007), suggesting 
a key role of the mPFC in integrating information to form a coherent 
narrative structure. Therefore, unlike narrative comprehension, the 
higher level of the cortical architecture in the mPFC might be distinct in 
dynamically updating and reciprocally interacting between in
terlocutors during conversation to form a coherent conversational 
structure.

Third, the above cortical architecture was only identified at the 
dyadic level rather than the individual level. Previous theory has indi
cated that individuals engaged in joint activities like a conversation 
construct a shared cognitive and linguistic framework to facilitate 
communication and understanding (Tomasello et al., 2005). This 
framework, grounded in shared intentions and mutual knowledge, is 
essential for successful interaction. Recent theories also suggest that 
interactions involve more than mirroring, incorporating complementary 
behaviors and dynamically coupled interactions that further complexify 
social exchanges (Hasson and Frith, 2016). During a conversation, 
participants not only share intentions but also dynamically build and 
adjust their mental representations to achieve mutual understanding, 
continuously coordinating and reaching consensus on content (Clark 
and Brennan, 1991). Although these theories do not explicitly address 
the interplay between shared and individual representations, they imply 
that the formation of group-level intentions and representations may 
weaken individual-level representations. Supporting this notion, a 
recent hyperscanning study found that during group interactions, 
increased inter-brain synchronization in the dorsolateral prefrontal 
cortex (DLPFC) among group members was accompanied by decreased 
neural activation in the DLPFC at the individual level (Yang et al., 2020). 
This perspective is reflected in our findings, showing a unique cortical 
architecture for the linguistic hierarchy only at the dyadic level. This 

result also aligns with the interactive alignment model, which posits that 
conversational participants gradually align at multiple levels, including 
situational models, semantic, syntactic, lexical, prosodic, and phonetic 
representations, forming similar conceptual and linguistic representa
tions (Pickering and Garrod, 2004). It is also consistent with the hier
archical model for interpersonal verbal communication (Jiang et al., 
2021), which suggests that neural synchrony between interlocutors 
specifically underpins the shared representation of speech, from basic 
visual-auditory integration to mutual understanding and the represen
tation of social concepts and relationships.

Finally, there are limitations in this study. First, although fNIRS is the 
most appropriate technique to test the cortical representation of natu
ralistic conversational speech, it may still lead to a possibility of false 
negative results due to its limited coverage of brain regions, especially 
those in deeper structures than the outer cortex. Although this limitation 
didn’t affect our conclusion about the linguistic hierarchy and the 
gradient cortical architecture, it should be further elaborated in future 
studies. Second, we did not look at smaller linguistic units such as sen
tences and words. Future studies are needed to involve more levels of 
linguistic units to capture the complete linguistic hierarchy and the 
cortical architecture.

In conclusion, this study provided original evidence for the linguistic 
hierarchy and the gradient cortical architecture supporting the repre
sentation of the linguistic hierarchy in the conversational speech. This 
finding suggests that the linguistic hierarchy, as outlined in previous 
studies, is a general principle of human natural language, no matter 
whether in the unidirectional narrative speech or the bidirectional 
conversational speech. Moreover, this effect was only found at the 
dyadic level between interlocutors. Together, these findings filled a gap 
in the literature by extending the linguistic hierarchy of natural lan
guage and its gradient cortical representation from unidirectional 
narrative comprehension to bidirectional naturalistic conversation.
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