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Abstract

Social interaction is of vital importance for human beings. While the hyperscanning

approach has been extensively used to study interpersonal neural synchronization

(INS) during social interactions, functional near-infrared spectroscopy (fNIRS) is one

of the most popular techniques for hyperscanning naturalistic social interactions

because of its relatively high spatial resolution, sound anatomical localization, and

exceptionally high tolerance of motion artifacts. Previous fNIRS-based hyperscanning

studies usually calculate a time-lagged INS using wavelet transform coherence (WTC)

to describe the direction and temporal pattern of information flow between individuals.

However, the results of this method might be confounded by the autocorrelation

effect of the fNIRS signal of each individual. For addressing this issue, a method

termed partial wavelet transform coherence (pWTC) was introduced, which aimed to

remove the autocorrelation effect and maintain the high temporal-spectrum resolution

of the fNIRS signal. In this study, a simulation experiment was performed first

to show the effectiveness of the pWTC in removing the impact of autocorrelation

on INS. Then, step-by-step guidance was offered on the operation of the pWTC

based on the fNIRS dataset from a social interaction experiment. Additionally, a

comparison between the pWTC method and the traditional WTC method and that

between the pWTC method and the Granger causality (GC) method was drawn. The

results showed that pWTC could be used to determine the INS difference between

different experimental conditions and INS's directional and temporal pattern between

individuals during naturalistic social interactions. Moreover, it provides better temporal

and frequency resolution than the traditional WTC and better flexibility than the GC
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method. Thus, pWTC is a strong candidate for inferring the direction and temporal

pattern of information flow between individuals during naturalistic social interactions.

Introduction

Social interaction is of vital importance for human

beings1,2 . For understanding the dual-brain neurocognitive

mechanism of social interaction, the hyperscanning

approach has recently been extensively used, showing

that the patterns of interpersonal neural synchronization

(INS) can well characterize the social interaction

process3,4 ,5 ,6 ,7 ,8 ,9 ,10 ,11 ,12 ,13 ,14 . Among recent studies,

an interesting finding is that the role difference of individuals

in a dyad may lead to a time-lagged pattern of INS, i.e.,

INS occurs when the brain activity of one individual lags

behind that of another individual by seconds, such as that

from listeners to speakers5,9 , from leaders to followers4 , from

teachers to students8 , from mothers to children13,15 , and

from women to men in a romantic couple6 . Most importantly,

there is a good correspondence between the interval of the

time-lagged INS and that of social interaction behaviors, such

as between teachers questioning and students answering8

or between parenting behaviors of mothers and compliance

behaviors of children15 . Thus, time-lagged INS may reflect

a directional information flow from one individual to another,

as proposed in a recent hierarchical model for interpersonal

verbal communication16 .

Previously, the time-lagged INS was mainly calculated on the

functional near-infrared spectroscopy (fNIRS) signal because

of its relatively high spatial resolution, sound anatomical

localization, and exceptionally high tolerance of motion

artifacts17  when studying naturalistic social interactions.

Moreover, to precisely characterize the correspondence

between the neural time lag and the behavioral time lag during

social interaction, it is essential to obtain the INS strength

for each time lag (e.g., from no time lag to a time lag of

10 s). For this purpose, previously, the wavelet transform

coherence (WTC) procedure was extensively applied after

shifting the brain signal of one individual forward or backward

relative to that of another individual5,6 ,18 . When using this

traditional WTC procedure for fNIRS signals, there is a

potential challenge because the observed time-lagged INS

may be confounded by the autocorrelation effect of the fNIRS

signal for an individual19,20 ,21 . For example, during a dyadic

social interaction process, the signal of participant A at time

point t may be synchronized with that of participant B at the

same time point. Meanwhile, the signal of participant A at

time point t may be synchronized with that of participant A at

a later time point t+1 because of the autocorrelation effect.

Therefore, a spurious time-lagged INS may occur between

the signal of participant A at time point t and that of participant

B at time point t+1.

Mihanović and his colleagues22  first introduced a method

termed partial wavelet transform coherence (pWTC), and

then applied it in marine science23,24 . The original purpose

of this method was to control the exogenous confounding

noise when estimating the coherence of two signals. Here, to

address the autocorrelation issue in the fNIRS hyperscanning

data, the pWTC method was extended to calculate time-

lagged INS on the fNIRS signal. Precisely, a time-lagged

INS (and a directional information flow) from participant A

to participant B can be calculated using the equation below

(Equation 1)23 .

https://www.jove.com
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Here, it is assumed that there are two signals, A and B, from

participants A and B, respectively. The occurrence of signal

B always precedes that of signal A with a time lag of n, where

WTC (At, Bt+n) is the traditional time-lagged WTC. WTC (At,

At+n) is the autocorrelated WTC in participant A. WTC (At, Bt)

is the time-aligned WTC at time point t between participant A

and B. * is the complex conjugate operator (Figure 1A).

 

Figure 1: Overview of pWTC. (A) The logic of the pWTC. There are two signals A and B, within a dyad. The occurrence

of A always follows that of B with a lag n. A gray box is a wavelet window at a certain time point t or t+n. Based on the

pWTC equation (represented in the figure), three WTCs need to be calculated: the time-lagged WTC of At+n and Bt; the

autocorrelated WTC in participant A of At and At+n; and the time-aligned WTC at timepoint t, At and Bt. (B)The layout of

optode probe sets. CH11 was placed at T3, and CH25 was placed at T4 following the international 10-20 system27,28 .

Please click here to view a larger version of this figure.
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This protocol first introduced a simulation experiment to

demonstrate how well the pWTC resolves the autocorrelation

challenge. Then, it explained how to conduct pWTC in

a step-by-step way based on an empirical experiment

of naturalistic social interactions. Here, a communication

context was used to introduce the method. This is because,

previously, the time-lagged INS was usually calculated

in a naturalistic communication context3,4 ,6 ,8 ,13 ,15 ,18 .

Additionally, a comparison between the pWTC and the

traditional WTC and validation with the Granger causality

(GC) test were also conducted.

Protocol

The human experiment protocol was approved by the

Institutional Review Board and Ethics Committee of the State

Key Laboratory of Cognitive Neuroscience and Learning

at Beijing Normal University. All participants gave written

informed consent before the experiment began.

1. The simulation experiment

1. Generate two time series of signals that correlate with

each other, with one signal having autocorrelation at a 4

s time lag. Set the correlation coefficient of r between the

two signals to 0.4.

2. Furthermore, generate two time series of signals without

any correlation but with autocorrelation in one signal.

3. Calculate values of traditional 4 s time-lagged INS with

Equation 2 based on the generated signals with or

without correlation, which can be named time-lagged

INSWTC with autocorrelation and time-lagged baseline

INSWTC with autocorrelation.
 

NOTE: Here, the traditional time-lagged WTC is

expressed by the following equation (Equation 2)25
 

 

where, C denotes the continuous wavelet transform

operator at different scales i and time points t. S denotes

the smoothing operator. * denotes the complex conjugate

operator. W and M indicate two individual time series of

signals.

4. Remove autocorrelation from the generated signals.

Then, calculate the values of traditional 4 s time-lagged

INSWTC with Equation 2 based on the generated

signals with or without correlation, which can be named

time-lagged INSWTC without autocorrelation and time-

lagged baseline INSWTC without autocorrelation.

5. Calculate the values of 4 s time-lagged pWTC with

Equation 3 based on the generated signals with or

without correlation, named time-lagged INSpWTC and

time-lagged baseline INSpWTC.
 

NOTE: The pWTC can be calculated based on the

following equation (Equation 3)23
 

 

where, WTC (Wt, Mt+n) is the traditional time-lagged

WTC. WTC (Mt, Mt+n) is the autocorrelated WTC of one

individual. WTC (Wt, Mt) is the time-aligned WTC. * is the

complex conjugate operator.

6. Repeat the above procedures 1000 times.

7. After subtracting the baseline INS, compare the results

of time-lagged INSWTC with autocorrelation, time-

lagged INSWTC without autocorrelation, and time-

lagged INSpWTC using the analyses of variance

(ANOVA) method.
 

https://www.jove.com
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NOTE: Here, it is expected that the time-lagged INSWTC

with autocorrelation will be significantly higher than the

time-lagged INSWTC without autocorrelation and the

time-lagged INSpWTC, and no significant difference

is expected between the time-lagged INSWTC without

autocorrelation and the time-lagged INSpWTC.

2. The empirical experiment

1. Participants and procedure

1. Recruit appropriate participants.
 

NOTE: In this study, twenty-two pairs of close

opposite-sex friends (mean age of women = 20.95,

standard deviation (SD) = 1.86; mean age of

men = 20.50, SD = 1.74) were recruited through

advertising from undergraduates of universities in

Beijing. All participants were right-handed and had

normal or corrected-to-normal vision. Furthermore,

no participants had any language, neurological, or

psychiatric disorders.

2. Ask each pair of participants to sit face-to-face

during the experiment. Ask them to communicate

freely on a supportive topic in one session and on a

conflict topic in the other session.
 

NOTE: The topics were used to induce the

intended positive or negative emotional valence.

Each communication session lasted 10 min, and the

order of topics was counterbalanced.

3. Ask the participants to report about the supportive

and the conflict topics as a standard set-up rule. Ask

each partner to rate the positive or negative valence

level that might have been induced on a definite

point scale. Then, rank the reported topics according

to the rating.
 

NOTE: In this work, the topics were selected with

the following three steps. First, for the supportive

topics, each participant was required to report 1-3

personal issues related to what she/he wanted to

improve in her/his life. Each participant was required

to report 1-3 cases that had induced or would induce

conflict between them or that might endanger their

relationship for the conflict topics. Second, each

partner was required to rate the level of positive or

negative valence each topic might induce on a 7-

point scale (1 = not at all, and 7 = very much). Third,

the reported topics were ranked according to the

rating. The first two topics in the list of supportive

topics and conflict topics were selected.

2. fNIRS data collection

1. Use 26-channel fNIRS topography system (see

Table of Materials) to collect fNIRS data.
 

NOTE: Two customized optode probes set covered

the bilateral frontal, temporal, and parietal cortices

(Figure 1B).

2. Precisely, ask each participant to wear a cap with

two customized probe sets (see Table of Materials).

3. Align the nasion, inion, and ear mastoids with Fpz,

Opz, T7, and T8, which are typical landmarks of

10-20 international system26 .

4. Align channel (CH) 11 to T3 and CH25 to T4

following the international 10-20 system for the two

probe sets27,28 .

5. Validate the anatomical locations of probe sets by

scanning magnetic resonance imaging (MRI) data

from a typical participant with a high-resolution T1-

weighted magnetization-prepared rapid gradient-

echo sequence (TR = 2530 ms; TE = 3.39 ms; flip

https://www.jove.com
https://www.jove.com/
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angle = 7°; slice thickness = 1.3 mm; voxel size =

1.3 x 1 x 1.3 mm).

6. Use Statistical Parametric Mapping 12 (SPM12) to

normalize the image to standard Montreal imaging

institute coordinate (MNI coordinate) space29 .

Then, use the NIRS_SPM toolbox (see Table of

Materials) to project the MNI coordinates of the

probes to the automated anatomical labeling (AAL)

template.

7. Collect the optical density data of near-infrared

light at three wavelengths (780, 805, and 830 nm)

at a sampling rate of 55.6 Hz (equipment default

parameters).

8. Test the signal quality by using fNIRS topography

system built-in equipment software (see Table of

Materials).

9. Begin signal recording.
 

NOTE: Some published protocols have

demonstrated how to collect fNIRS signals with

various equipment and systems30,31 ,32 .

3. fNIRS data preprocessing

1. Export the data files from the equipment.
 

NOTE: In the current experiment, the built-in

software automatically converted all-optical density

data into oxyhemoglobin (HbO) concentration

changes based on the modified Beer-Lambert law.

2. Remove the first and last 15 s of data for each

session to avoid transient responses.

3. Use the MATLAB decimate built-in function to

downsample the data from 55.6 Hz to 11.1 Hz.
 

NOTE: The power spectrum patterns between 55.6

Hz and 11.1 Hz are quite similar (Supplementary

Figure 1).

4. Use the built-in MATLAB application function

(Homer3, see Table of Materials) with appropriate

filtering function to apply the discrete wavelet

transform filter method to correct motion artifacts.

5. Use the MATLAB pca built-in function to remove

global physiological noise. Remove the top 80% of

the variance from the signals.

6. Remove physiological noise based on the previous

studies33 . Precisely, remove frequency bands of

each signal above 0.7 Hz to avoid aliasing of high-

frequency physiological noise (e.g., cardiac activity).

7. Then, remove frequency bands of each signal below

0.01 Hz to filter out very-low-frequency fluctuations.

8. Finally, remove frequency bands of each signal

within 0.15-0.3 Hz to exclude the potential impact of

respiratory activity.

4. First-level fNIRS Data Processing

1. First, calculate INS using traditional WTC

(INSWTC).
 

NOTE: Here, a women-led time-lagged pattern of

INSWTC was predicted to occur between the brain

activity of women and that of men because previous

studies have suggested different roles of women

and men during a conversation34,35 . The traditional

WTC calculated this pattern of INSWTC by shifting

the brain activity of men backward relative to that of

women (see Equation 2).

2. Calculate the women-led 2 s-lagged INSWTC value

after removing the initial 2 s of data from women

https://www.jove.com
https://www.jove.com/
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and the last 2 s of data from men with Equation

2. Similarly, after removing the initial 2 s of data

from men and the last 2 s of data from women,

calculate the men-led 2 s-lagged INSWTC value with

Equation 4.
 

NOTE: Here, the wcoherence function, which is a

built-in function of the wavelet toolbox of MATLAB,

was used (see Table of Materials).

3. Repeat this procedure with different time lags n, i.e.,

n = 2 s, 4 s, 6 s, 8 s across all potential CH pairs

(e.g., CH2 in women and CH10 in men, 676 pairs in

total). Additionally, calculate the strength of men-led

time-lagged INSWTC the same way (Equation 4).
 

4. Second, calculate INS using pWTC (INSpWTC).
 

NOTE: pWTC was calculated based on Equation

3. The calculation of INSpWTC was repeated with

different time lags n, i.e., n = 2 s, 4 s, 6 s, 8 s across

all potential channel pairs (e.g., CH2 in women and

CH10 in men, 676 pairs in total). Additionally, the

strength of the men-led time-lagged INSpWTC was

calculated the same way (Equation 5).
 

5. Generate time-lagged time series of fNIRS signals

at different time lags.

6. Calculate the values of the time-lagged WTC at

different time lags.

7. Generate autocorrelated time series of fNIRS

signals at different time lags. To calculate the 2 s-

autocorrelated value for men, remove the first 2 s of

data from the men and the last 2 s data from the men.

8. Calculate the autocorrelated WTC values at different

time lags.

9. Generate time-aligned time series of fNIRS signals

at different time lags. To calculate the 2 s time-

aligned WTC, remove the first 2 s of data from the

men and the women's first 2 s of data.

10. Calculate the time-aligned WTC values.

11. Enter time-aligned WTC, time-lagged WTC, and

autocorrelated WTC values at different time lag into

Equation 3 and Equation 5-the equation of pWTC,

generating INSpWTC.

12. Finally, calculate INS using the GC method

(INSGC).
 

NOTE: To further validate the pWTC method and

evaluate its advantages and disadvantages, GC-

based INS was calculated using the GC method

(INSGC).

13. Based on the pWTC result, bandpass filters the HbO

signal of each individual at the SMC (i.e., 0.4-0.6 Hz,

see Representative Results).

14. Conduct a GC test (Econometric toolbox, MATLAB)

within each dyad in the supportive and conflict topics

separately.
 

NOTE: Four groups of F-values are obtained for

INSGC: (1) from women to men on the supportive

topic (W2M_supp); (2) from men to women on the

supportive topic (M2W_supp); (3) from women to

men on the conflict topic (W2M_conf); and (4) from

men to women on the conflict topic (M2 W_conf).

The F-values are used to index the INSGC.

https://www.jove.com
https://www.jove.com/
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5. Second-level fNIRS data processing

1. Transform INS with Fisher-z transformation, and

then average INS at the temporal dimension.
 

NOTE: Here, Fisher-z transformation was

conducted using a custom MATLAB script with

Equation 636 :
 

 

where, r is the value of the WTC or pWTC, and z is

the Fisher-z transformed value of the WTC or pWTC.

2. For the averaged INS at each time lag, conduct a

paired two-sample t-test (supportive vs. conflict) on

each CH pair across the frequency range. Then,

identify all significant frequency clusters (P < 0.05).

3. Conduct a cluster-based permutation test to

establish a threshold for the results.

1. Reassign dyadic relationships by randomly

assigning the participants to new two-member

pairs, i.e., the participants of a dyad that

had never communicated with one another.

Recalculate the INS at each time lag, perform

paired t-tests again in the new sample, and

identify significant frequency clusters again.

2. Select the cluster with the largest summed t-

value. Repeat the above procedures 1000 times

to generate a null distribution of the maximum

false-positive t-values.
 

NOTE: The distribution is served as the chance

level. The familywise error rate (FWER) is

controlled at q = 0.05, which means that only

the top 5% of the null distribution of the false-

positive t-values exceeds the threshold (R*).

3. Compare the summed t-value of each identified

frequency cluster in the original sample with the

null distribution to obtain significant statistical

results.

4. Conduct a context (supportive, conflict) x direction

(women to men, men to women) analysis of variance

(ANOVA) to test the difference in INS direction

between different conditions (i.e., topics) (p < 0.05).

5. Conduct a paired two-sample two-tailed t-test

between the results of WTC (Wt, Mt + n) and

WTC (Mt, Mt + n) to test the potential impact of

autocorrelation on INS.
 

NOTE: The INS of WTC (Mt, Mt + n) reflects

autocorrelation.

Representative Results

Simulation results
 

The results showed that the time-lagged INSWTC with

autocorrelation was significantly higher than the time-lagged

INSWTC without autocorrelation (t(1998) = 4.696, p < 0.001)

and time-lagged INSpWTC (t(1998) = 5.098, p < 0.001).

Additionally, there was no significant difference between

time-lagged INSWTC without autocorrelation and INSpWTC

(t(1998) = 1.573, p = 0.114, Figure 2A). These results

indicate that pWTC can effectively remove the impact of the

autocorrelation effect on INS. Additionally, when the WTC

value was set to be close to 0 or 1, the time-lagged INSpWTC

still showed reliable results when the WTC value was away

from 0 or 1 (Supplementary Figure 2).

Empirical experiment results
 

INS pattern using the traditional WTC method
 

The results showed that at 0.04-0.09 Hz,INSWTCin the

sensorimotor cortex (SMC, CH20) of both women and men

https://www.jove.com
https://www.jove.com/
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was significantly higher in the supportive topic than in the

conflict topic when the brain activity of men lagged behind that

of women by 2 s, 4 s, and 6 s (2 s: t(21) = 3.551, p = 0.0019;

lag 4 s: t(21) = 3.837, p = 0.0009; lag 6 s: t(21) = 3.725, p =

0.0013). Additionally, at 0.4-0.6 Hz, INSWTC in the SMC was

significantly higher in the conflict topic than in the supportive

topic when men's brain activity lagged behind women's by 4

s (t(21) = 2.828, p = 0.01, Figure 2B).

Additionally, to compare the direction of INSWTC in different

topics, a topic (supportive, conflict) x direction (women

to men, men to women) ANOVA was first conducted on

INSWTC of the SMC under a 2-6 s time lag. The 0.04-0.09

Hz results did not show any significant interaction effects at

any time lag (ps > 0.05). For the 0.4-0.6 Hz frequency range,

the results showed that the interaction effect was marginally

significant (F(1, 21) = 3.23, p = 0.086). Pairwise comparisons

showed that INSWTC from women to men was significantly

higher in the conflict topic than in the supportive topic (M.D. =

0.014, S.E. = 0.005, p = 0.015), whereas INSWTC from men

to women did not differ significantly between topics (M.D. =

0.002, S.E. = 0.006, p = 0.695).

Finally, to test the impact of autocorrelation on the results

of traditional time-lagged INSWTC, INSWTC was compared

between WTC(Wt, Mt+4) and WTC(Mt, Mt+4) at 0.04-0.09

Hz and 0.4-0.6 Hz, respectively. Note that the INSWTC of

WTC(Mt, Mt+4) reflects autocorrelation. The results showed

that at the 0.4-0.6 Hz, there was no significant difference

between the INSWTC of WTC(Wt, Mt+4) and that of WTC(Mt,

Mt+4) (t(21) = 0.336, p = 0.740). At 0.04-0.09 Hz, the INSWTC

of WTC(Mt, Mt+4) was significantly higher than that of WTC

(Wt, Mt+4) (t(21) = 4.064, p < 0.001). A comparison was also

conducted between the frequency ranges of 0.04-0.09 Hz and

0.4-0.6 Hz regarding INSWTC of WTC(Mt, Mt+4). The results

showed that the INSWTC of WTC(Mt, Mt+4) was significantly

higher at 0.04-0.09 Hz than at the 0.4-0.6 Hz (t(21) = 5.421, p

< 0.001). These results indicate that the time-lagged INSWTC

was affected by autocorrelation in both the low- and high-

frequency ranges, but the impact was larger for the lower-

frequency range than for the higher-frequency range.

INS pattern using the pWTC method
 

The results showed that the difference in INSpWTC between

the conflict and supportive topics reached significance at the

SMC of both women and men at 0.4-0.6 Hz when male brain

activity lagged behind that of women by 4 s (t(21) = 4.224,

p = 0.0003). At 0.04-0.09 Hz; however, no significant results

were found, nor were their effective results at other frequency

ranges (Ps > 0.05, Figure 2C).

An additional ANOVA test was conducted on the INSpWTC

of the SMC at 0.4-0.6 Hz. The results showed that the

interaction between topic and direction was marginally

significant (F(1,21) = 3.48, p = 0.076). Further pairwise

comparisons showed that INSpWTC from women to men was

significantly higher in the conflict topic than in the supportive

topic (M.D. = 0.016, S.E. = 0.004, p = 0.002), whereas

INSpWTC from men to women did not differ significantly

between topics (M.D. = 0.0007, S.E. = 0.006, p = 0.907,

Figure 2D).

INS pattern using the GC method
 

An ANOVA test was conducted on the INSGC at the SMC

within the 0.4-0.6 Hz only. The results showed a significant

interaction between topic and direction (F(1,21) = 8.116, p =

0.010). Pairwise analysis showed that INSGC from women to

men was significantly higher in the conflict topic than in the

supportive topic (MD = 5.50, SE = 2.61, p = 0.043). In contrast,

https://www.jove.com
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the INSGC from men to women was not significantly different

between topics (MD = 1.42, SE = 2.61, p = 0.591, Figure 2E).

 

Figure 2: Results of the simulation and empirical experiment. (A) The simulation results of three simulated samples. The

time-lagged INSWTC with autocorrelation was significantly higher than time-lagged INSWTC without autocorrelation and

INSpWTC. There was no significant difference between time-lagged INSWTC without autocorrelation and pWTC. (B) The t-

map of INSWTC in the empirical experiment, showing significant context effects within 0.04-0.09 Hz when SMC activity of

men lagged behind that of women by 2-6 s. There was also a marginally considerable context effect within 0.4-0.6 Hz when

https://www.jove.com
https://www.jove.com/
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SMC activity of men lagged behind that of women by 4 s. (C) The t-map of INSpWTC, showing a significant context effect

within 0.4-0.6 Hz when SMC activity of men lagged behind that of women by 4 s. (D) Comparison of directional INSpWTC

at different topics by pWTC. Directional INS from women to men is significantly higher in conflict contexts than in supportive

contexts. (E) Validation of directional INS by GC test (INSGC). The resulting pattern of INSGC is similar to INSpWTC. Please

click here to view a larger version of this figure.

Supplementary Figure 1: The power spectrum plot for

sample rate at 11.1 Hz (blue line) and 55.6 Hz (red line).

The power spectrum pattern for the two is quite similar. Please

click here to download this File.

Supplementary Figure 2: The pWTC maps of floor and ceil

WTC. (A) Left panel: the time-lagged WTC map generated by

two same signals, the x-axis is time point, and the y-axis is

frequency-band. The mean value of WTC at all points is ~1.

Right panel: the pWTC map of two similar signals. The pWTC

map is quite similar to the WTC map. (B) Left panel: the time-

lagged WTC map generated by two random signals, the x-

axis is the time point, and the y-axis is the frequency-band.

The mean value of WTC at all points is ~0. Right panel: the

pWTC map of two similar signals. The pWTC map is quite

similar to the WTC map. Please click here to download this

File.

Discussion

In hyperscanning studies, it is usually essential to describe the

directional and temporal patterns of information flow between

individuals. Most previous fNIRS hyperscanning studies have

used traditional WTC25  to infer these characteristics by

calculating the time-lagged INS. However, as one of the

intrinsic features of the fNIRS signal20,21 , the autocorrelation

effect might confound the time-lagged INS. To address

this issue, in the protocol herein, a method termed pWTC

was introduced22 . This method estimates the time-lagged

INS after partially out autocorrelation and maintains the

advantages of the WTC method. This protocol offers step-

by-step guidance on how to conduct pWTC and validates

the results of pWTC by comparing its results with those of

traditional WTC and GC tests.

The critical steps of applying pWTC in fNIRS-based

hyperscanning data are demonstrated in this protocol.

Specifically, first, to calculate the time-lagged WTC, the

autocorrelated WTC, and time-aligned WTC must be

calculated based on the time-lagged fNIRS time series. Next,

the pWTC are computed at different time lags according

to Equation 1. The results of the pWTC return a time x

frequency matrix, and the values in the matrix ranges from 0

to 1. Thus, further statistical tests can be conducted on these

values.

In the demonstration protocol, the representative results of

the traditional WTC showed two significant effects at two

frequency bands: 0.4-0.6 Hz. However, the impact within

the 0.04-0.09 Hz did not survive the threshold in the pWTC

results, suggesting that this effect might be confounded by the

autocorrelation effect of the fNIRS signal. On the other hand,

the results within the 0.4-0.6 Hz range were well replicated by

the pWTC method. These results indicate that after removing

the autocorrelation effect, pWTC provides more sensitive

and specific developments in inferring INS's directional and

temporal patterns between individuals. Another possibility,

however, is that pWTC is not susceptible to INS's directional

and temporal patterns in lower frequency ranges than in

the higher frequency ranges, resulting in underestimation of

https://www.jove.com
https://www.jove.com/
https://www.jove.com/files/ftp_upload/62927/62927fig02large.jpg
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https://www.jove.com/files/ftp_upload/62927/Supplemental Fig1.pdf
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the INS effect. Future studies are needed to clarify these

possibilities further.

A comparison with the GC test further supports this

conclusion. The results of the GC test were quite similar to

those of the pWTC, showing important information flow from

women to men but not from men to women. There was a slight

difference between the results of the GC test and pWTC,

i.e., the interaction effect between topic and direction was

marginally significant in the results of the pWTC but reached

significance in the GC test. This difference may be because

the pWTC is calculated at a finer timescale than the GC test.

Thus, although both the pWTC and GC tests can provide

reliable results when controlling for the autocorrelation effect,

the pWTC is advantageous because it is not necessary to

make stationary assumptions and holds a high temporal-

spectrum structure.

The pWTC method also has its limitations. Similar to

the GC test, the causality inferred from pWTC is not a

real causality37,38 . Instead, it only indicates a temporal

relationship between the signals of A and B. This issue

should be kept in mind when applying the pWTC method.

Second, pWTC only partials out the autocorrelation effect.

Thus, other potential concurrent variables, such as shared

environments or similar actions, may still impact the results.

Consequently, conclusions about the direction and temporal

pattern of information flow should be drawn after controlling

these confounding factors.

Additionally, there were some complicated issues about

fNIRS data preprocessing. Although fNIRS has a high

tolerance of head movements, motion artifacts are still

the most significant source of the noise39 . Large head

movements would still lead to a position shift of the optodes,

generating motion artifacts such as sharp spike and baseline

shifts. To address these issues, many artifacts correction

approaches were developed such as spline interpolation40 ,

wavelet-based filtering39 , principle component analysis41 ,

and correlation-based signal improvement42 , etc. Cooper

and his collegues43  have compared these approaches based

on real resting-state fNIRS data and found that wavelet-

based filtering produced the highest increase in contrast-to-

noise ratio. Further, Brigadoi and her collegues44  have also

compared these approaches in real linguistic task data and

also found that wavelet-based filtering was the most effective

approach in correcting motion artifacts. Thus, in this study,

wavelet-based filtering was applied and also recommended

for future fNIRS hyperscanning studies.

In general, pWTC is a valuable approach in estimating the

directional and temporal patterns of information flow during

social interaction. More importantly, it is believed that the

pWTC method is also suitable for pseudo-hyperscanning

studies (i.e., signals of two or multiple brains are not collected

simultaneously45,46 ). In such experiments, although the

direction of information flow is fixed, it is also of interest

to examine the duration of the time lag between the input

of the signal and the process of the signal. Therefore,

autocorrelation can also confound the results of the time-

lagged INS. In the future, this method can answer many

questions in hyperscanning and other interbrain studies. For

example, to determine the dominant role in various social

relationships, such as teachers and students, doctors and

patients, and performers and audiences. Additionally, as

pWTC maintains the temporal structures of INS, it is also

possible to test the dynamic pattern of INS, such as group

attitude convergence.

https://www.jove.com
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